Technical Documentation Features Demo
This post demonstrates the enhanced markdown capabilities: LaTeX math, Mermaid diagrams, and emoji support! π
LaTeX Math Expressions
Inline Math
You can write inline math like this: or
Display Math
For more complex equations, use display mode:
Mermaid Diagrams
Flowchart
flowchart TD
A[Start] --> B{Is it working?}
B -->|Yes| C[Great!]
B -->|No| D[Debug]
D --> B
C --> E[End]
Sequence Diagram
sequenceDiagram
participant User
participant Frontend
participant API
participant Database
User->>Frontend: Submit form
Frontend->>API: POST /api/data
API->>Database: Query
Database-->>API: Results
API-->>Frontend: Response
Frontend-->>User: Display success
Class Diagram (UML)
classDiagram
class Engineer {
+String name
+String role
+int yearsExperience
+code()
+review()
+mentor()
}
class Manager {
+String department
+int teamSize
+plan()
+delegate()
+evaluate()
}
class EngineeringManager {
+boolean technicalLead
+scrum()
+architect()
}
Engineer <|-- EngineeringManager
Manager <|-- EngineeringManager
Gantt Chart
gantt
title Project Timeline
dateFormat YYYY-MM-DD
section Planning
Requirements :2025-01-01, 7d
Design :2025-01-08, 10d
section Development
Backend Development :2025-01-18, 21d
Frontend Development :2025-01-25, 21d
section Testing
Integration Testing :2025-02-15, 7d
UAT :2025-02-22, 5d
State Diagram
stateDiagram-v2
[*] --> Draft
Draft --> Review: Submit
Review --> Approved: Accept
Review --> Draft: Reject
Approved --> Published: Deploy
Published --> Archived: Deprecate
Archived --> [*]
Emoji Support π
You can use emoji shortcodes in your markdown:
- π Launch your project
- π Fix those bugs
- π¨ Improve the design
- β¨ Add new features
- β‘ Improve performance
- π₯ Remove deprecated code
- β Add tests
- π Fix security issues
- π Update documentation
- π§ Work in progress
Combining It All
Hereβs a real-world example combining math and diagrams for explaining algorithm complexity:
The time complexity of binary search is , which can be proven:
Using the Master Theorem, we get
graph TB
A["Array[8]"] --> B["Array[4] Left"]
A --> C["Array[4] Right"]
B --> D["Array[2]"]
B --> E["Array[2]"]
C --> F["Array[2]"]
C --> G["Array[2]"]
style A fill:#6366f1,color:#fff
style B fill:#06b6d4,color:#fff
style C fill:#06b6d4,color:#fff
Happy documenting! π βοΈ
Ahmed Tourk
Engineering manager and software engineer building innovative solutions and leading high-performance teams.